
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for Ihis collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE

ADDRESS,

1. REPORT DATE 2. REPORT TYPE
Professional Paper

4. TITLE AND SUBTITLE

The ACETEF HLA Interface

6. AUTHOR(S)

Dr. Stephen O'Day, John McMaster

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Air Warfare Center Aircraft Division
22347 Cedar Point Road, Unit #6
Patuxent River, Maryland 20670-1161
9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

Naval Air Systems Command
47123 Buse Road Unit IPT
Patuxent River, Maryland 20670-1547

3. DATES COVERED

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Air Combat Environment Test and Evaluation Facility (ACETEF) at Patuxent River Naval Air Station received a certificate of High
Level Architecture (HLA) compliance in September 1999. The software vehicle for attaining compliance for the ACETEF simulation
objective model (SOM) was the ACETEF FHL SWEG/JIMM interface. This interface is written in a flexible architecture which permits
straightforward federation object model (FOM) extensions to the SOM object classes and the addition of FOM specific methods to the SOM
base classes. The FOM specific extensions can be archived apart from the interface and re-used as needed. This interface is currently being
used in the Joint Test and Training Capability Assessment (JTTCA) and the Joint Strike Fighter (JSF) Virtual Strike Warfare Environment 7
(VSWE7) exercises. A description of the software architecture and the philosophy behind the architecture is described. Methodologies for
FOM specific code development are discussed.

15. SUBJECT TERMS
Air Combat Environment Test and Evaluation Facility (ACETEF) Simulated Warfare Environment Generator (SWEG)
Joint Interim Mission Model (JIMM) Simulation object model (SOM)

16. SECURITY CLASSIFICATION OF:

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

17. LIMITATION
OF ABSTRACT

Unclassified

18. NUMBER
OFPAGES

19a. NAME OF RESPONSIBLE PERSON
Dr. Stephen O'Day / John McMaster
19b. TELEPHONE NUMBER (include area
code)
(301)342-6101/342-6357

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

My\t1 0

The ACETEF HLA Interface

Dr. Stephen C. O'Day
J.F. Taylor, Incorporated
21610 South Essex Drive

Lexington Park, MD 20653

John W. McMaster
NAWCAD

Air Combat Environment Test&Evaluation Facility
Building 2109

48150 Shaw Road
Patuxent River, MD 20670

Keywords:
flexible FOM, FOM re-use

ABSTRACT:77?e Air Combat Environment Test and Evaluation Facility(ACETEF) at Patuxent River Naval Air Station
received a certificate of High Level Architecture (HLA) compliance in September 1999. The software vehicle for
attaining compliance for the ACETEF simulation object model (SOM) was the ACETEF HLA SWEG/JIMM interface.
This interface is written in a flexible architecture which permits straightforward federation object model (FOM)
extensions to the SOM object classes and the addition of FOM specific methods to the SOM base classes. The FOM
specific extensions can be archived apart from the interface and re-used as needed. This interface is currently being
used in the Joint Test and Training Capability Assessment(JTTCA) and the Joint Strike Fighter (JSF) Virtual Strike
Warfare Environment 7 (VSWE7) exercises. A description of the software architecture and the philosophy behind the
architecture is described. Methodologies for FOM specific code development are discussed.

1. Introduction

The ACETEF HLA Interface was designed to provide a
convenient, highly configurable interface to the
SWEG/JIMM shared memory(SWEDAT) data structures,
protocol, and any ACETEF laboratory asset interfaced to
that environment.

The Simulated Warfare Environment Generator(SWEG)
is the forerunner of the Joint Interim Mission
Model(JIMM) which combines the features of the Navy's
SWEG model with those of the Air Force SUPPRESSOR
model. These models are all language-driven and permit
the developer to create objects that have capabilities,
susceptibilities, resources, tactics and systems(i.e. sensors,
weapons, communicators, disrupters, thinkers and
movers). Object information is stored in shared memory
while interactions between objects appear in asset action
messages.

The interface includes implementations of the eight basic
object classes and seventeen basic interaction classes of
the ACETEF SOM which is published in the DMSO
SOM library[l]. The SOM Object hierarchy is based on
"distributable" characteristics of simulation entities

represented. Any FOM classes may be implemented by
extending the SOM classes to include attribute data and
interaction objects which match the federation format.

Those classes which may be extended are included in the
user FOM files. The standard SOM files are not intended
for modification since the goal is to produce an
archivable, retrievable FOM implementation that will
compile and link with the fixed portion of the interface
code.

2. The ACETEF SOM

A brief description of the ACETEF SOM classes follows.

2.1 SOM Object Classes

The eight basic object classes consist of the following:
Simulation_Entity, Moving_Entity, LiveJVehicle, Site,
Abstract, Adhoc_Weapon, Simulation_Environment and
Remote_Environment.

Simulation_Entity is a class which contains pointers to
SWEG/JIMM, platforms but not systems. The
Moving_Entity class is derived from SimulationJEntity

DTIC QUALITY DISSECTED 1

and instances of this class move. Instances of the
Adhoc_Weapon class enter the game after the start and
have limited capabilities.

Live_Vehicle and Abstract are derived from
Moving_Entity. LiveJVehicle instances contain pointers
to all types of SWEG/JIMM systems whereas Abstract
instances have only disrupter and weapon system
pointers. Site is derived directly from Simulation_Entity
and has pointers to all types of SWEG/JIMM systems.

SimulationJEnvironment is a class which contains general
scenario location and calendar date information.
Remote_Environment is a class which contains
connectivity and federate_id information.

2.2 SOM Interaction Classes

The seventeen types of interactions(whose names make
them fairly self-explanatory) are as follows:

detonates_warhead
fires_a_weapon_at
declares_hit_or_miss
changes_sensor_status
changes_disruptor_status
changes_communicator_status
changes_sensor_mode
aborts_inflight_shot
removes_from_scenario
changes_sensor_pointing
changes Jammer_pointing
sensor_chance
sensor_occulting_changes
changes_signature
tracking_status_update
perception_update
explicit_communication

3. RTI Services Supported

This interface release supports the following RTI
services[2]:

createFederationExecution
destroyFederationExecution
joinFederationExecution
resignFederationExecution
publishObjectClass
publishlnteractionClass
subscribeObjectClass Attributes
subscribelnteractionClass
startRegistrationForObjectClass
stopRegistrationForObjectClass
registerObjectlnstance
disco verObj ectlnstance

updateAttribute Values
reflectAttributeValues
sendlnteraction
receivelnteraction
deleteObj ectlnstance
removeObj ectlnstance

requestAttributeValueUpdate
provideAttributeValueUpdate
negotiatedAttributeOwnershipDivestiture
requestAttributeOwnershipAssumption
attributeOwnershipDivestitureNotification
attributeOwnershipAcquisitionNotification
attributeOwnershipAcquisition
requestAttributeOwnershipRelease
attributeOwnershipReleaseResponse
cancelNegotiatedAttributeOwnershipDivestiture
cancelAttributeOwnershipAcquisition
confirmAttributeOwnershipAcq.Cancellation
is AttributeO wnedB yFederate

3.1 Service Call Constraints

Clearly not all services will be employed in any one
federation so the FOM designers must consider the
following issues:

A.) Which Federate will create the federation
executive?
B.) Will attribute updates be (in HLA jargon)
"pushed" (updateAttributeValues, reflectAttributeValues)
or "pulled" (requestAttributeValueUpdate,
provideAttributeValueUpdate)? A Federate can opt to
have some object classes use the "push" method, and
some use the "pull" method.
C.) Will object registration be automatic or
controlled by the startRegistrationForObjectClass /
StopRegistrationForObjectClass services?
D.) If attribute transfer will be used, will it be done
via the "push" or the "pull" services (negotiated or non-
negotiated).

The interface is designed to implement a federate within a
federation which accepts the following rules:
A.) The Federate is neither time constrained nor

regulating, but externally time-synchronized.
B.) Attribute transfer may occur at the start of a game,
after registration, or immediately after an
object enters the game, but at no other time.
C.) Attributes of a registered object instance may be
transferred only once during the object's existence.
D.) All objects that will play in the federation must be
known and identified by unique registration object tags
for the duration of the scenario.

4. Interface Design Overview

The following diagram is a structural overview of the
interface:

••• Fed \
Ambassador i ^

Asset Mailbox

SWEDAT

Shared Memory
MPM3 Blocks

RTI
Ambassador '•

4.1 Interface Structure

The Driver file contains the C++ main function which
has a while-loop for periodically "ticking" and making
service calls to the RTI ambassador using Fomjiandler
methods. The Driver file invokes methods of the
Fomjiandler and Fom_manager classes through single
instances of each class constructed in "main". Two posix
threads are launched by the Driver as well.

The Driver's Fomjiandler instance contains instances of
all the interface objects and instances of all the objects
which hold incoming and outgoing interaction data. The
Fomjiandler also holds pointers to shared memory and to
Fom_manager linked lists.

The Fom_manager instance is responsible for mapping a
FOM into a specific SWEDAT-resident scenario (run
under SWEG/JIMM or other engine), and for performing
standard housekeeping and initialization sequences
(create/join, read roster, attach to scenario, resign/destroy
federation). Callbacks from the federation ambassador
are routed to the Fomjiandler through the Fom_manager.

The Fomjiandler class instance contained in the Driver
also has methods which are invoked by the two posix
threads launched by the Driver. The "mailbox" thread
periodically checks the mailbox from SWEG to the
interface. It responds to asset action dispatches by writing
data into the appropriate FOM objects and/or flagging
interactions to be sent by the main loop thread.

The "SWEDAT" thread periodically cycles through all
the FOM objects, checking last update times and copying
new information to or from SWEDAT as the necessity
for update is indicated. The Fomjiandler plays the key
role in the functions just described because it contains the
objects which interface between the federation and
SWEG/JIMM players.

The configuration setup(CSET) file is a roster of
federation players used by the Fom_manager to generate a
linked list of interface objects. The Fomjiandler then
dynamically allocates an array of interface objects which
contain pointers to both SWEDAT and the Fom_manager
linked lists.Sometimes federations insist on publication at
the platform and system/device level. A properly written
roster will result in a one to one correspondence between

federation and interface objects with appropriate pointers
to SWEDAT.

4.2 Interface Execution

As execution begins, the Fom_manager reads the CSET
file and builds a linked list of "player-nodes" using the
CSET information. After locating SWEDAT, the
interface pre-installs the FOM objects using the
information on the "player-nodes". This creates a set of
FOM objects, managed by the Fom_handler, some of
which are attached to corresponding objects in SWEDAT,
and others that are awaiting their later appearance in the
federation.

The Fom_manager then creates and/or joins the federation
and begins publication/subscription and registration. If
attribute transfers are to take place concerning objects that
are in the federation from start, those attribute transfers
take place next.

Finally, the interface notifies SWEG/JIMM of its
readiness, the scenario starts, and the interface main loop
is entered. At this point both posix threads are running.
The main loop ticks the RTI, processes callbacks and then
calls the FOM handler method trigger_objects to allow
each object a chance to use RTI services.

When a user presses CTL-C, a signal handler setup in
hla_if.c attempts a graceful resignation from the
federation, displaying a message indicating that action
and telling the user to press CTL-C a second time if the
federate appears to be hung. A second CTL-C will force
an exit.

5. FOM Implementation

To implement a FOM using the ACETEF HLA interface,
the developer must decide which of the ACETEF SOM
classes most resemble the classes of the FOM. The SOM
classes are then modified to accommodate the style of
interaction and attribute configuration required to play in
a particular federation.

The CSET roster allows one to specify an "object root"
for each named FOM class and you may have several
FOM classes derived from a SOM class. On the
SWEDAT side of the interface, there may be multiple
federation objects each of which points to only a part of a
SWEG/JIMM player(since players are composed of
platforms.elements and systems).

It is also possible to include interactions which do not
occur in the SOM but which are required to play in the
federation. The long term goal is to then add these to the

SOM if it is felt that more general future applications may
arise from these federation-specific interactions.

The described approach has been successfully employed
by ACETEF for the JTTCA project[4] and in an
integration test for VSWE7[5].

5.1 File Structure

There are certain files designated for federation specific
modification and certain files for which modification is
discouraged from the standpoint of archivability and
configuration management.

All of the base class definitions are contained in the
hla_standard.h file. The hla_if_manager.cc and
basic_handler.cc files contain the hla_if_manager and
basic_handler base class methods, respectively. The
acetefFederationAmbassador methods are located in the
ambassadors.ee file. SOM object and interaction methods
are found in acetef_som.ee. Created player queue
functions are located in create_queue.ee and fifo.ee. All
of these files are considered to be standard SOM files and
are not to be modified for federation-specific applications.

The acetef_fom.h file contains the derived FOM object
class definitions. The derived and added FOM interaction
class definitions are contained in fom_interactions.h. The
fom_HandleGroup.h possesses the derived FOM handle
classes. All of the FOM object, interaction and handle
class methods appear in acetef_fom.ee. The complex data
types which support the FOM classes are found in cdt.h.
The derived Fom_manager class definition and methods
may be found in fom_manager.h and fom_manager.ee.
The fom_handler.h file contains the Fomjiandler class
definition and fom_handler.ee contains the methods.

6. The Federation CSET Roster

This interface is designed to support federations that are
"fully specified", meaning, all possible instances of all
possible object classes must be predetermined and
enumerated prior to federation. This interface does not
support "surprise" instances in a federation. If a variable
number of instances are possible, depending upon the
events that occur during a federation's execution, a range
of numeric identifiers must be assigned to the total set of
possible instances, prior to execution. For instance, you
federate may wish to play a Surface-to-Air Missile (SAM)
battery, and you will publish the classes "sam-battery"
and "sam-missile". Any "sam-site" instance may fire up
to 6 "sam-missile" objects during the federation,
depending upon the availability of air targets. Prior to
federation, you must decide upon a numeric "Class ID"
for the "sam-site" and "sam-missile" classes, and a
unique, numeric "Instance ID" for each instance of each

class. Since each "sam-site" can fire up to 6 "sam-
missiles", you will have to define a range of six unique
numeric values for each of those possible "sam-missiles".
This is done so that the interface can build its CSET roster
of objects.

Upon startup, the interface reads the CSET file and pre-
instantiates all the FOM object instances mentioned in it.
These FOM objects are the go-betweens between the
Federation and SWEDAT. There are four types of FOM
objects:
A.) Remotely owned and present in the game from
the start.
B.) Locally owned and present in the game from the
start.
C.) Remotely owned, appears in the game sometime
after the start.
D.) Locally owned, appears in the game sometime
after the start.

Note that these categories are irrespective of attribute
transfers; "ownership" refers to the federate owning them
at their creation.

The CSET file can be created by hand or can be generated
using the GUI utilities. Its purpose is to define the
"roster" of federation objects for the interface. It maps
the federation class id number and federation instance id
number to the SWEDAT player semantic code and global
instance id. Note that the federation id numbers are
federation-wide codes for all classes and instances in the
federation that must be agreed upon by federation
participants - these are distinct from the class and object
handles provided by the RTI at runtime.

The CSET also enables one to run a given FOM with
various SWEG scenarios, by changing the semantic codes
and global id's to match those of the new scenario. The
new scenario entities must have the appropriate
capabilities to match the FOM requirements.

When the interface is started, seven arguments must be
provided on the command line:
•[shmem/scram] SWEDAT location, local shared
memory or SCRAMNET.
• [asset ID]Numeric identifier of asset to be interfaced.
• [CSET filenameJCSET filename.
• [fedex name]Federation executive name.
• [FED filename]Name of FED file to use (OMDT output
file).
• [join flagjlf 0, simply join the federation, if 1, create the
federation, then join.
• [registration flag]If 0, register all objects at start, if 1,
wait use start/stop registration callbacks.

Note that the asset id is found in the SWEG/JIMM
scenario CDB asset declarations.

7. Summary

The ACETEF HLA interface supports the object and
interaction classes of the ACETEF SOM. The interface is
comprised of a multi-threaded architecture which interacts
with the RTI and with SWEG/JIMM shared memory. The
CSET roster file reduces the burden on the RTI and on
other federates by allowing the interface to read in from
file federation information which is pre-determined rather
than requesting this information through attribute updates.
The existing interface has been thoroughly tested and is
available through the Joint Interim Mission Model office
web-site and from ACETEF. The full SOM
implementation is expected to be released later this year.

8. References

[1] DMSO Simulation Object Model(SOM) library
http: //oral .msiac.dmso.mil

[2] Simulated Warfare Environment Generator User's
Guide Vol.4 Interfaces, ACETEF,1999.

[3] RTI 1.3 Programmer's Guide,DMSO,1999.
[4] Joint Test and Training Capability Assessment

Interface Control Document, M.Payne Project
Director,1999.

[5] Hough,M. Major General USMC: "JSF- The
Affordable Solution",http: //www, jast.mil

Author Biographies

STEPHEN O'DAY is a Senior Scientist at
ACETEF(Patuxent River Naval Air Station). He works in
the Model Interfaces group and has taken the lead in the
HLA interface development effort for the JIMM and
SWEG models. Dr. O'Day has implemented the IEEE
DRM4 and DRM8 in SWEG and JIMM. Dr. O'Day
received his Ph.D. in physics from the University of
Maryland in 1990 for work done at Fermi National
Accelerator Laboratory in Chicago,IL.

JOHN MCMASTER is the leader of the Model
Interfaces group at ACETEF. John designed the software
architecture of the ACETEF HLA interface. He also
designed and developed the DISI interface. John has
participated in numerous distributed simulation events at
the Atlantic Ranges and Facilities during his career.
Among these are the JSF VSWE events, ACETEF-
REDCAP integration, JADS-EW, HLA Engineering
Protofederation(1996), STOWE-1994 and KERNEL
BLITZ. John received his BSEE from Drexel University
in 1982 and is a member of IEEE and NMIA.

